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Abstract
We investigate the so-called classical information deficit—a candidate for a
measure of classical correlations emerging from a thermodynamical approach
initiated by Oppenheim et al (Phys. Rev. Lett. 89 180402 (Preprint quant-ph/

0112074)). It is defined as the difference between the amount of information
that can be concentrated by the use of LOCC and the information contained in
subsystems. We compare a one-way version of this quantity with a measure of
classical correlations proposed by Henderson and Vedral. As a result, we obtain
that the quantity can increase under local operations, hence it does not possess
the property required for a good measure of classical correlations. Recently it
was shown by Devetak 2004 (Preprint quant-ph/0406234) that the regularized
version of this quantity is monotonic under local operations. In this context,
our result implies that regularization plays a role of ‘monotonizer’.

PACS number: 03.67.−a

Introduction

Correlations are a fundamental property of compound quantum distributed systems. The
study of quantum correlations was initiated by Einstein, Podolsky and Rosen and Schrödinger.
They were concerned with entanglement–quantum correlation, which are nonexistent in
classical physics. Usefulness of entanglement in quantum information theory to such tasks
as teleportation or dense coding has motivated its extensive study. However, subsequently
an important subject of characterizing other interesting types of correlations has emerged.
Namely, quantum correlation has been studied as a notion independent of entanglement [1, 3].
There have been trials to divide total correlation into classical and quantum parts [4, 5]. A
measure of ‘classical or quantum’ correlations was defined and analysed in [6] and strange
properties of classical correlation of quantum states were discovered in [7]. A measure of
classical correlation has also been proposed in [8].
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In [1] an operational measure of quantum correlations was proposed. It was based on
the idea that by using a system in the state � one can draw (N − S(�))kT ln 2 of work from
a single heat bath, where N is the amount of qubits in state � and S(�) is the von Neumann
entropy of a given state. So the information function given by

I (�) = N − S(�) (1)

can be treated as equivalent to work (see [9] in this context). This scenario was used in
the distributed quantum system, where Alice and Bob are allowed to perform only local
operations and communicate classically with each other (these are so-called LOCC operations)
to concentrate information contained in the state on local subsystems. For nonclassical states
the amount of work drawn by LOCC (or equivalently, the amount of information ILOCC we
can concentrate by LOCC operation on local subsystems) is usually smaller than the work
extractable by global operations (or equivalently, the information IGO, to which we have
access by using global operation). The resulting difference � = IGO − ILOCC is called the
information deficit or work deficit and it accounts for the part of correlation that must be
lost during classical communication, and thus describes purely quantum correlation. One can
consider a one-way version of the quantity, where only one-way classical communication is
allowed. If communication is from Alice to Bob, the one-way deficit is denoted by �→.

In [5] a complementary quantity that could account for classical correlation was defined—
the classical information deficit �cl:

�cl = ILOCC − ILO (2)

where ILO is the amount of information accessible by using only local operations performed on
NA qubits of subsystem A and NB qubits of subsystem B (i.e. ILO = NA−S(�A)+NB −S(�B)).
One can see that the two measures of correlations add up to quantum mutual information given
by

IM = S(�A) + S(�B) − S(�AB) (3)

where S(�) = −Tr � log � is the von Neumann entropy of the state � and �A(B) = TrB(A)�AB ,
i.e. we have

�cl + � = IM. (4)

Analogously, we have the following formula for the one-way version of the classical
information deficit:

�→
cl (�AB) = I→

LOCC − ILO. (5)

In this paper we analyse connections between the classical one-way deficit and a measure
of classical correlation CHV introduced by Henderson and Vedral in [4]. The latter is maximal
Bob’s average information that can be obtained by Alice performing measurement on the
system and telling Bob the outcomes. We provide a formula for �→

cl and obtain that it is very
close to the formula for the latter measure. We examine when the two measures can be equal
to each other. On the basis of this we find that whenever �→

cl and CHV are distinct, �→
cl can

increase under local operations. We provide explicit examples of states for which CHV and
�→

cl are indeed distinct, showing thereby a nonintuitive fact, i.e. that the one-way classical
information deficit �→

cl (�AB) is not a measure of classical correlation, because it can increase
under local operations. Remarkably, it was recently shown by Devetak [2] that the quantity
which is equal to the regularized classical information deficit �→

cl
∞(�AB) is monotonic under

LO. Combining those results with ours, we obtain that regularization may play a role of
monotonizer. An asymptotic version of a function may be monotonic, even though one copy
version is not.
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One of the methods that we applied to obtain our results was to find a bridge between the
results from the field of classical capacity of quantum channels [10–13] and our quantities.
Then some peculiar results obtained in the latter field allowed us to find states suitable for our
problems.

Formula for ∆→
cl and comparison with Henderson–Vedral measure

In this section we provide a formula for �→
cl and compare it with a measure of classical

correlation introduced by Henderson and Vedral. To this end we have to determine a formula
for the maximal amount of information which can be concentrated on subsystems via a
protocol, in which one-way classical communication is allowed. The most general such
protocol is the following. Alice makes a measurement on her part of state and tells her results
to Bob. The amount of concentrable information is then equal to the information of Alice plus
average final information of Bob. The protocol transforms the state in the following way:

�AB → �′
AB =

∑
i

Pi ⊗ I�ABPi ⊗ I (6)

where pi given by

pi = Tr(Pi ⊗ I�ABPi ⊗ I ) (7)

is the probability that Bob gets the state �B
i , which is of the form

�B
i = TrA(Pi ⊗ I�ABPi ⊗ I )/pi (8)

and {Pi} are projectors constituting von Neumann measurement. Usually, in LOCC paradigm
one would allow for POVM. However, POVM requires adding ancillas, which we have to take
into account if we are estimating the amount of information that we can concentrate. Thus, we
include from the very beginning all needed ancillas and consider von Neumann measurement.
In such a way we take into account POVMs, too. (There is an open question of whether it
pays to add ancillas at all; we will discuss this later.)

The amount of information I (P) which can be concentrated on subsystems in the one-way
protocol P is thus equal to

I (P) = I out
A + I out

B (9)

= NA − S(�′
A) + NB −

∑
i

piS
(
�i

B

)
(10)

= N − S(�′
A) −

∑
i

piS
(
�i

B

)
(11)

where NA(B) is the amount of qubits in the part of state of Alice (Bob), (NA + NB = N),
�′

A = TrB�′
AB . The maximal information that can be concentrated by one-way protocols P→

is denoted by I→:

I→ = sup
P→

I (P→). (12)

Having the formula for I→ we can express �→
q as

�→
q = N − S(�AB) − sup

{Pi }

{
N −

∑
i

piS
(
�i

B

) − S(�′
A)

}

= inf
{Pi }

{ ∑
i

piS
(
�i

B

)
+ S(�′

A)

}
− S(�AB). (13)
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Since �→
cl is equal to the difference between total information N −S(�AB) and I→, we obtain

�→
cl (�AB) = sup

{Pi }

[
{S(�A) − S(�′

A)} +

{
S(�B) −

∑
i

piS
(
�i

B

)}]
(14)

where the supremum is taken over all local dephasings on Alice’s side. Note that the protocol
is determined by choosing Alice’s measurement. Note also that the optimal measurement
is a complete one, i.e. Pi can be chosen to be one-dimensional projectors. Indeed, given
any incomplete measurement, Alice can always refine it in such a way that her entropy will
not increase, and of course, any refinement will not increase Bob’s average entropy. In
equation (14), we have distinguished two terms. The second term

S(�B) −
∑

i

piS
(
�i

B

)
(15)

shows the decrease of Bob’s entropy after Alice’s measurement. The first one

S(�A) − S(�′
A) (16)

denotes the cost of this process on Alice’s side, and is non-positive. It vanishes only if Alice
measures in the eigenbasis of her local density matrix (�A). Thus, the expression for

(
�→

cl

)
is

very similar to the measure of classical correlation introduced by Henderson and Vedral [4]:

CHV(�AB) = sup
Pi

(
S(�B) −

∑
i

piS
(
�i

B

))
. (17)

Originally, in the definition of CHV the supremum was taken over POVMs, but as mentioned,
we take the state acting already on a suitably larger Hilbert space, unless stated otherwise
explicitly. The difference between the Henderson–Vedral classical correlation measure and
that given in equation (14) is that the former does not include Alice’s entropic cost of performing
dephasing. Hence in general

�→
cl � CHV.

When ∆→
cl can be equal to CHV

In this section we show that our two quantities can be equal if and only if there is a measurement
that is optimal for both quantities and the measurement is in the eigenbasis of the density matrix
of Alice’s system. More precisely we prove the following lemma.

Lemma 1. Let �AB be any bipartite state. Then CHV(�AB) = �→
cl (�AB) if and only if there

exist projectors {Pi} such that they commute with �A(= trB�AB) and they are optimal for both
CHV and �→

cl for the state �AB .

Remark 1. Note that eigenbasis of �A may not be unique.

Proof. For specific measurement, let us use the following notation:

cHV = S(�B) −
∑

i

piS
(
�B

i

)
(18)

δ→
cl = S(�A) − S(�′

A) + S(�B) −
∑

i

piS
(
�B

i

)
. (19)
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The quantities cHV and δ→
cl are functions of state and a measurement respectively. We have

CHV = sup
{Pi }

cHV (20)

�→
cl = sup

{Pi }
δ→

cl . (21)

‘⇒’ Let us prove the ‘only if’ part: suppose that

CHV = �→
cl .

Consider measurement (i) which achieves CHV and measurement (ii) which achieves �→
cl .

Let c
i(ii)
HV be the values cHV for measurement i(ii) and S

(
�′(ii)

A

)
is Alice’s part entropy after

measurement (ii). Then

�→
cl = S(�A) − S

(
�′(ii)

A

)
+ c

(ii)
HV = c

(i)
HV = CHV. (22)

We know that for an arbitrary measurement S(�A) − S(�′
A) � 0 [14] and c

(ii)
HV � c

(i)
HV. If we

want equality (22) holds, then it must be that

S(�A) − S
(
�

(ii)
A

) = 0 and c
(ii)
HV = c

(i)
HV. (23)

It follows that measurement (ii) is also optimal for CHV. Moreover, note that this measurement
is made in eigenbasis, otherwise it would increase entropy S(�′

A) violating equation (22).
‘⇐’ The ‘if’ proof is obvious. Since we assume that the measurement achieving CHV and

�→
cl is the same and is made in the eigenbasis of �A, so then S(�A) − S(�′

A) = 0, so that �→
cl

and CHV must be equal. This ends the proof of the lemma. �

When ∆→
cl can increase under local operations

The main result of this section is to show that �→
cl can increase under local operations. To

this end we first show that whenever �→
cl and CCV are distinct, the former can increase under

local operations. Next we provide examples of states for which it is the case.

Lemma 2. If �→
cl �= CHV then the quantity �→

cl can be increased by local operations.

Therefore let us assume that �→
cl < CHV for the state �AB . (Recall that, in general,

�→
cl � CHV.) Let us consider an optimal measurement

{
P HV

i

}
achieving CHV. After the

measurement, the state is of the form

�′
AB =

∑
i

piP
HV
i ⊗ �B

i .

We know that CHV cannot increase after local operations [4]. Then

CHV(�AB) � CHV(�′
AB) = S(�B) −

∑
i

piS
(
�B

i

)
(24)

so that
{
P HV

i

}
is an optimal measurement for the state �′

AB also. Now if we repeat the
measurement

{
P HV

i

}
on �′

AB we get the same value of CHV(�′
AB) as before since �′

AB and the
created Bob ensemble do not change under that particular measurement. Thus

CHV(�AB) = CHV(�′
AB).

Note that
{
P HV

i

}
corresponds to the eigenbasis of �′

A, where �′
A is the reduced matrix of �′

AB .
Then

�→
cl (�′

AB) = CHV(�′
AB)

so that

�→
cl (�′

AB) > �→
cl (�AB)

i.e. �→
cl is increased after local operations of dephasing by Pi .
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Having proved lemma 2 the question is whether there exist states for which �→
cl �= CHV.

We know that in such cases, there should not exist any measurement optimizing both δ→
cl and

cHV, which is made in eigenbasis. Equivalently, there should not exist a measurement that
optimizes CHV, which is made in the eigenbasis of �A. To show this, the following results
of Schumacher and Westmoreland [15] and King, Nathanson and Ruskai [13] connected with
classical capacity of a quantum channel are helpful.

Suppose a source produces states �k with probabilities pk . For this ensemble, the authors
in [13, 15] considered a quantity called entropy defect or Holevo quantity, defined as

χ = S(�) −
∑

k

pkS(�k)

where

� =
∑

k

pk�k.

They were interested in maximizing χ for the output ensemble {pk,�(|ψk〉〈ψk|)}, where �

is a fixed completely positive map (channel).
It turns out that for some channels, to maximize χ , one needs a non-orthogonal input

ensemble. This was first shown by Fuchs [12]. An example of such a channel is given by the
following map [15]:

�1(�) = A1�A
†
1 + A2�A

†
2 (25)

where

A1 =
√

1
2 |1〉〈1| + |0〉〈0| A2 =

√
1
2 |0〉〈1|

where {|0〉, |1〉} is the standard basis in C
2. For this channel, maximum χ is obtained for

non-orthogonal input states.
On the other hand, it has been recently shown [13] that sometimes the number of states

in the optimal ensemble must be greater than the dimension of the system. An example is the
map given by

�2(�) = 1
2 (I + [0.6w1, 0.6w2, 0.5 + 0.5w3] · 
σ) (26)

where

� = 1
2 (I + 
w 
σ)

and 
w = (w1, w2, w3) with 
σ = (σ1, σ2, σ3) and σi being the Pauli matrices. In this case χ is
maximized by a three-component ensemble.

The above examples can lead us to a bipartite state �AB , for which CHV is not achieved by
the measurement in the eigenbasis of �A. (Note that these examples act only as indications.
The results of channel capacities are not used directly, although such a direct connection is
not ruled out.)

More precisely, given any channel and ensemble, we will construct some bipartite state
and a measurement on one of its subsystems. We will expect that the measurement will give
a high value of cHV on that state. In particular, if the ensemble has two components but is
non-orthogonal, we obtain a higher value of cHV than the value produced by measurement
in eigenbasis of �A, so that the latter measurement is no longer optimal. Moreover, if
the ensemble has three components and the measurement gives a better value than any von
Neumann measurement, the optimal measurement for attaining CHV will not be a von Neumann
measurement, but POVM. We show that it is indeed the case in both situations.
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Let us now present our construction of the state and measurement from a given channel
� and ensemble {pi, ψi}. We will first exhibit two ways of obtaining ensemble {pi, �i} from
a pure bipartite state ψAB , where �i = �(ψi). Let ψAB be a state for which

TrA|ψAB〉〈ψAB | =
∑

i

pi |ψi〉〈ψi |.

One can write it in the form |ψAB〉 = ∑
i

√
pi |i〉|ψi〉, where |i〉 are orthogonal. Note that

when we make a measurement in the basis |i〉 at Alice’s side, the ensemble {pi, ψi} is created
at Bob’s side. Then one obtains ensemble {pi, �i} by letting ψi evolve through the channel
�. But one can achieve {pi, �i} in a different way. First, the state ψAB is prepared and the
operation IA ⊗ �B is performed, producing state �AB :

�AB = (IA ⊗ �B)(ψAB).

Then Alice makes the measurement in the basis |i〉 and this produces the ensemble {pi, �i}
at Bob’s side. The connection between the scenarios is illustrated by the commuting diagram
below. Starting from ψAB , we can achieve the ensemble {pi, �i} in two ways.

ψAB

IA⊗�B

� �AB

MA MA

� �

{pi, ψi}B
�

� {pi, �i}B

(27)

Here MA denotes the measurement by Alice and {∗, ∗}B denotes the corresponding
ensemble at Bob’s side. If we want to find the needed state �AB for which �→

cl �= CHV, we
should construct a pure state ψAB and then perform operation IA ⊗ �B . First we use the
channel (given by equation (25)) and ensemble from [15] to obtain �AB for which cHV for
some measurement is greater than that for the measurement in eigenbasis.

An example of a non-orthogonal ensemble, for the channel (�1) given by equation (25),
which gives greater χ than any orthogonal one is

{{
1
2 , ψ0

}
,
{

1
2 , ψ1

}}
, where

|ψ0〉 = 1√
2
(|0〉 + |1〉) (28)

|ψ1〉 = 4
5 |0〉 + 3

5 |1〉. (29)

Then we have

�AB = (
IA ⊗ �B

1

)|ψAB〉〈ψAB | (30)

where

|ψAB〉 = 1√
2
(|0〉A |ψ0〉B + |1〉A |ψ1〉B).

Now, we can check directly that for Alice’s measurement in the basis |0〉, |1〉 (which
prepares the non-orthogonal ensemble

{{
1
2 , ψ0

}
,
{

1
2 , ψ1

}}
on Bob’s side), the Henderson–

Vedral quantity cHV (see equation (18)) attains the value c
(1)
HV = 0.456 67. But for Alice’s

measurement in the eigenbasis of �A, cHV attains the value c
(2)
HV = 0.3356. Therefore



11472 B Synak and M Horodecki

c
(1)
HV > c

(2)
HV, i.e. there exists Alice’s measurement which gives better value for cHV than

the measurement in the eigenbasis of �A. The optimal measurement is therefore clearly not in
eigenbasis. This fact, as follows from lemma 1, implies that for a state given by formula (30)
one has CHV �= �→

cl and, even more remarkably, as follows from lemma 2, for this state �→
cl

increases under local measurements. The operation that increases �→
cl is Alice’s dephasing in

the basis |0〉, |1〉.
We now use the results of [13] to find the next example of state for which CHV �= �→

cl .
The three-component ensemble for which χ , for the channel �2 given by equation (26), is
greater than that for any two-component ensemble is {pi, |φi〉} where p0 = 0.4023, p1 =
p2 = 0.298 85 and

|φ0〉 = |0〉
|φ1〉 = a|0〉 + b|1〉
|φ2〉 = a|0〉 − b|1〉

with a = 0.070 1579, b = 0.821 535. Then by our prescription, the state for which POVM is
better than any von Neumann measurement, as far as CHV is concerned, is

�AB = (
IA ⊗ �B

2

)|φAB〉〈φAB |
where

|φAB〉 =
2∑

i=0

√
pi |i〉|φi〉.

Again, as from lemmas 1 and 2, for this state �→
cl �= CHV, hence �→

cl can be increased by
Alice’s dephasing in the basis {|0〉, |1〉, |2〉}, which can be treated as a POVM, since Alice’s
subsystem has rank 2, so it is efficiently qubit. For the measurement in the basis |i〉 (when
the ensemble {pi, |φi〉} is prepared on Bob’s side), cHV attains the value δ1

HV = 0.324 99. For
von Neumann measurements, cHV � 0.321 915. Equality is obtained for the measurement in
eigenbasis.

Finally, let us show that POVMs that are good for CHV can be very bad for �cl. One can
check that the same POVM which gives high value for cHV gives δ→

cl < 0. Therefore a POVM
which is good for cHV can be very bad for δ→

cl .
We have checked that for δ→

cl , the best von Neumann measurement is in eigenbasis. Then
δ→

cl attains the value δ
→(vN)
cl ≈ 0.321 915.

This example indicates that �→
cl might be such a quantity for which POVMs are not

helpful. We conjecture that it can be a truth.

Asymptotic regime: regaining monotonicity

In this section we will describe briefly the Devetak result [2] on the asymptotic equality of
classical deficit and the Henderson–Vedral quantity and show how it is related to ours.

To start with, one can consider an asymptotic version of classical deficit, which takes into
account possible gain when one is operating on many copies collectively. It is given by

�→
cl

∞ = lim
n

�→
cl (ρ⊗n)

n
. (31)

Such operation is called ‘regularization’. The regularized �→
cl has intepretation of maximal

local information that can be obtained per input copy from many copies of the given state by
closed local operations and one-way communication. Equivalently, it is the maximal number
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of asymptotically pure qubits that can be obtained in such a way. Similarly, one can consider
regularized CHV quantity

C∞
HV = lim

n

CHV(ρ⊗n)

n
. (32)

This quantity was shown in [8] to have operational meaning of maximal amount of common
random bits obtained by one-way LOCC operations in excess of communication invested.

As we have shown, in the one copy case �→
cl is smaller than CHV because Alice’s optimal

measurement produced additional entropy. Now, there is a question: can this production of
entropy be overcome when Alice can perform joint measurements on many copies?

In [2] it was shown that this is indeed the case. Namely, for any Alice’s POVM P on a
single copy of ρAB , there exists a Alice’s POVM P ′ on ρ⊗n

AB , such that after the measurement,
Alice’s entropy is n(S(ρA) + δ) while Bob’s information gain, when he gets to know the
outcomes of P ′, amounts to n(IB − ε), where IB is Bob’s average information gain given
outcomes of P . Both ε and δ can be made arbitrarily small when n is sufficiently large. Thus
the POVM P ′ provides asymptotically the same Bob’s information gain per copy as the POVM
P , while increasing Alice’s entropy only by a negligible amount. Consequently, from formula
(14) it follows that the difference between �→

cl (ρ⊗n) and CHV(ρ⊗n) can be made equal to
n(ε + δ). If we take high n, so that ε and δ are small, and use it in the regularization formulae
(31) and (32), one obtains that C∞

HV = �→
cl

∞.
Now we can go back to the monotonicity question. It is easy to see that regularization

does not affect monotonicity under local operations. Therefore C∞
HV is still monotonic.

Consequently, �→
cl

∞ is monotonic too. Thus classical deficit is a quantity which in the
single copy case is not monotonic under local operations; however, after regularization it
acquires monotonicity.

Discussion

In this paper we have considered classical information deficit �→
cl defined as the difference

between the amount of information that can be concentrated by LOCC and information
concentrable by LO. It is equal to the difference between the measure of total correlation and
the measure of quantum correlation present in the state. It was reasonable to expect that it
should be a measure of classical correlation. We have shown that it is not true, because �→

cl
can increase under local operations. We have proved it through comparison with a measure
of classical correlation proposed by Henderson–Vedral. We based this on a lemma which
tells us when these quantities can be equal. We showed that if they are different, then �→

cl
can increase under local actions. The last thing we did was found examples of states for
which �→

cl �= CHV. We also exhibited an example, where POVM is very good for CHV, but
completely bad for �→

cl . This suggests that POVMs may not be helpful in the one-way protocol
of localizing information. This would be compatible with the result for two-way protocols,
where borrowing ancillas does not help in concentrating information [16]. The above results
would mean that �→

cl is useless as far as classical correlation of quantum states is concerned.
Fortunately, it is not the case.

Recently it was shown in [2] that the regularized version of �→
cl is a measure of classical

correlation, because it is equal to distillable common randomness [8], which in fact is equal
to the regularized CHV. Since the latter is monotonic under local operation, then �→

cl if
regularized is also monotonic. It is a very puzzling fact that we have a quantity which defined
that one copy of state can increase after local operations, but its regularized version cannot.
Thus, according to our results, the regularization plays a role of ‘monotonizer’ in this case.
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Moreover, it follows that �→
cl is not additive. Indeed, we have found examples where �→

cl and
CHV are not equal to each other, while they become equal after regularization by [2]. Since
both of them can only go up under regularization, we obtain that �→

cl of n copies is greater
than n times �→

cl of one copy for some states.
Finally, we hope that the results presented will stimulate further research towards

understanding the quantities emerging from the thermodynamical approach to quantum
distributed systems in the context of correlations contained in those systems.
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